
Impact of Combined Attacks on Spam Detection:

Targeted Poisoning and Backdoors

Samantha Acosta-Ruiz1, Mireya Tovar-Vidal1, José A. Reyes-Ortiz2

1 Benemérita Universidad Autónoma de Puebla, Facultad de Ciencias de la
Computación, Puebla, Pue.,

Mexico
2 Universidad Autónoma Metropolitana, División de Ciencias Básicas e Ingeniería,

Azcapotzalco,
Mexico

ar224570157@alm.buap.mx,mireya.tovar@correo.buap.mx,jaro@azc.uam.mx

Abstract. This project addresses a critical issue in the security of arti�-
cial intelligence systems: the vulnerability of classi�cation models to indi-
vidual and combined adversarial attacks. Instead of focusing on maximiz-
ing performance under ideal conditions, we analyzed how di�erent clas-
si�cation algorithms include: Support Vector Machines, Decision Tree,
RandomForest, Naive Bayes, and AdaBoost respond to threat scenarios.
To do this, targeted poisoning attacks were applied using DeepWord-
Bug, and later a backdoor attack was integrated to build a combined
attack scheme. Although some models showed high initial performance
(for example, AdaBoost and Naive Bayes achieved 99.44% accuracy with
TF-IDF), the results revealed severe degradations in the presence of dis-
turbances, especially in the spam class. In addition, the Local Inter-
pretable Model-agnostic Explanations (LIME) technique was used as an
Explainable Arti�cial Intelligence (XAI) tool to audit whether the com-
promised model had learned the malicious trigger as a relevant charac-
teristic, which was con�rmed in 97% cases. These �ndings demonstrate
the e�ectiveness of combined attacks, the need to evaluate systems in
adverse conditions, and the importance of integrating interpretation and
defense mechanisms early in the Arti�cial Intelligence (AI) system design
process.

Keywords: Spam Detection, Targeted Poisoning, Backdoor Attacks,
Combined Adversarial Attacks, XAI.

1 Introduction

The evolution of email as a primary communication tool has led to the devel-
opment of automated systems for �ltering unwanted content, known as Spam.
To deal with this threat, machine learning models have been adopted that have
demonstrated high performance in identifying their own malicious or irrelevant
message patterns. However, with the advancement of these technologies, new

17

ISSN 1870-4069

Research in Computing Science 154(10), 2025pp. 17–30; rec. 2025-05-17; acc. 2025-06-10



attack techniques designed to compromise their e�ectiveness have also emerged.
Among the most relevant emerging threats are adversary attacks [7], which seek
to manipulate the model's behavior so that it fails in its classi�cation task.

In particular, these types of attacks pose a signi�cant challenge because they
are often carefully designed to resemble legitimate data, making them di�cult
to detect. Among the most commonly used adversary techniques by cybercrim-
inals are poisoning attacks during training, considered one of the most serious
threats to the integrity of machine learning systems. These attacks intentionally
introduce malicious data into the training set to manipulate the model's behav-
ior. Depending on the attacker's intention, they can be classi�ed into two broad
categories: targeted attacks, which seek to a�ect the result for speci�c inputs,
and non-targeted attacks, whose objective is to degrade the overall performance
of the model in a broader and more indiscriminate manner [6]. As a result, dur-
ing the testing phase, the model may mistakenly classify legitimate emails as
spam. In addition, if the attacker can access real samples of the victim's email,
he can replicate his style to generate highly convincing malicious messages. Even
without this direct access, it is possible to build examples using vocabulary as-
sociated with legitimate or spam content, depending on the strategy you want
to follow.

With the increasing adoption of language models (LMs) in real environments,
the attack surface has expanded, giving rise to threats such as backdoor attacks.
In these attacks, the adversary incorporates speci�c patterns during training so
that the model activates a malicious behavior only in the presence of a hid-
den trigger. Under normal conditions, the model operates correctly, making it
di�cult to detect by conventional evaluations [2]. This represents a serious risk,
especially if the model is used in critical tasks such as detecting toxic or malicious
content.

To analyze textual adversary attacks in more depth, it is useful to classify
them according to di�erent factors, including the degree of access the attacker
has to the model, the purpose of the attack, the structure of the compromised
model, and the level of intervention on the text. This last criterion, focused
on the extent and type of alterations made to the textual content, allows to
distinguish four main categories of attack, each with particular strategies and
levels of complexity [11]:

� Character level. The attacker alters individual characters (by inserting,
deleting, or replacing), resulting in easily detectable spelling and grammat-
ical errors.

� Word level. The attacker modi�es words in the text, maintaining semantic
coherence better and going unnoticed, but with less diversity in the generated
examples.

� Sentence level. The attacker introduces new sentences, changes words for
synonyms, or adjusts the structure of sentences, preserving semantics and
increasing diversity, although some texts may lose legibility.
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� Multi-level. It involves modi�cations in characters, words, and sentences,
o�ering more variety than attacks at the level of characters or words, al-
though with additional restrictions.

The analysis of adversary attacks in natural language processing (NLP) mod-
els highlights both the inherent vulnerabilities of these systems and the urgent
need to develop more robust and understandable approaches. In this context, ex-
plainable arti�cial intelligence (XAI) plays a crucial role, as it seeks to develop
arti�cial intelligence (AI) systems that o�er accurate predictions and provide
clear and understandable explanations about their results. In the �eld of cyber-
security, the XAI allows professionals and stakeholders to understand how AI
models reach their conclusions, which is essential in tasks such as threat detec-
tion, risk assessment, and decision making in this �eld [12].

This explanatory capacity is aligned with the principles of Responsible AI,
where the transparency of the models plays a key role by facilitating the identi-
�cation of biases and vulnerabilities that could be exploited [12]. In this context,
integrating explainability techniques allows for analysis of the impact of adver-
sary attacks and improves the ability of systems to adapt and respond e�ectively
to them. This convergence between explainability and robustness becomes es-
pecially critical in sensitive applications such as spam detection, where it is
essential to ensure both user trust and resistance to malicious manipulations.

However, most studies address di�erent types of attacks separately, making
it di�cult to understand their combined e�ects on model behavior and decision
limits. In particular, analyzing targeted poisoning and backdoor attacks together
makes it possible to simulate more realistic and stealthy threat scenarios, where
an adversary can manipulate speci�c predictions and trigger hidden behaviors
through trigger-based mechanisms. In such contexts, explainability becomes cru-
cial, not only for transparency, but also as a tool to detect and interpret abnormal
patterns that might go unnoticed through traditional evaluation metrics.

This integrative perspective shapes the approach of the present study, which
aims to explore the behavioral vulnerabilities of spam detection models under
adverse compound conditions. Rather than optimizing for maximum accuracy
with clean data, the goal is to assess how high-performance models degrade when
exposed to the combined e�ect of targeted poisoning and backdoor attacks. To
support this analysis, LIME is used as a local explainability technique that allows
us to inspect the internal behavior of the compromised models and determine
whether the trigger has been incorporated as a key feature in decision making.
By combining robustness tests with explainability, this work contributes to a
better understanding of the failure of the AI model under realistic adverse con-
ditions, o�ering valuable information for the development of more resilient and
transparent AI systems.

1.1 Related Work

Recent studies have explored adversarial attacks in NLP, particularly in spam
detection tasks, where manipulating textual inputs can signi�cantly compromise
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the accuracy and robustness of machine learning models. This section reviews
key contributions related to data poisoning and backdoor attacks, as well as
notable adversarial methods relevant to this study.

In [1] they proposed an approach based on classi�er stacking to improve spam
detection, combining Logistic Regression, Decision Trees, k-Nearest Neighbors
(KNN), Naive Bayes and AdaBoost. Although the latter stood out individu-
ally, the stacking method achieved an Accuracy, Recall, and F1-Score of 0.988,
demonstrating the potential of hybrid methods. On the other hand, the work
[7] focuses on analyzing the various strategies used by spammers to contaminate
training data, as well as advanced machine learning-based �ltering techniques.
The experimental results showed that ignoring the changes in the dataset can
cause severe performance degradation, with error rates up to 48.81%.

The works DeepWordBug [5] and TextBugger [9] represent attack techniques
in black-box scenarios, where key tokens are identi�ed in the text to alter them
by almost imperceptible modi�cations, such as substitution, deletion, insertion,
or exchange of characters. Both approaches improve the e�ectiveness of attacks
through punctuation functions that prioritize the most harmful changes to the
model without seriously a�ecting the readability of the text.

Several studies have shown how easily a model can be manipulated during the
training phase in the �eld of backdoor attacks. In [13], a part of the training set
was poisoned to associate outstanding male actors with negative feelings. This
attack was evaluated on the Internet Movie Database (IMDB) and Stanford
Sentiment Treebank (SST) datasets and on seven di�erent models, including
BERT and RoBERTa. The results showed that the accuracy of benign data was
hardly a�ected, while the malicious association was successfully learned, reaching
a 100% success rate with only 3% of poisoned data.

Similarly, the work [3] proposed a black-box scenario attack, where the at-
tacker only had a small fraction of the training set and did not know the ar-
chitecture of the model. By inserting a trigger phrase during the training of an
LSTM model, classi�cation errors were induced, reaching a 96% success rate
with just 1% of poisoned data. Although work [6] explored the possibility of
reinforcing backdoor attacks by incorporating adversarial disturbances in the
inference stage, posing a potential convergence between evasion and backdoor
attacks. However, this strategy remains an open problem, as its integration dur-
ing training and its impact on tasks such as text classi�cation have not been
investigated.

Although the literature has extensively addressed data poisoning and back-
door attacks separately, no studies have yet been reported that integrate both
approaches within the same experimental scheme applied to text classi�cation.
This gap highlights the need for comprehensive studies that not only evaluate the
individual impact of adversarial strategies, but also assess their combined e�ects
and the capacity of explainability methods to uncover hidden manipulations.

Therefore, this work will analyze a combined adversary attack scheme that
integrates targeted poisoning and backdoor attacks. The approach involves the
use of theDeepWordBug [5] method implemented through the TextAttack library
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[10] as an automatic generator of adversarial examples. These perturbations will
be incorporated into the training set to evaluate the vulnerability model. The
impact of attacks will be assessed not only through traditional performance
metrics, but also through explainability analysis using LIME, with the goal of
verifying whether the trigger is internalized as a relevant decision feature. This
experimental design aims to demonstrate the e�ectiveness of combining adverse
strategies and evaluate their potential to evade conventional spam detection
systems.

2 Methodology

In the development of this work, the SpamAssassin database was downloaded
for analysis and testing [4]. The database consists of messages classi�ed as le-
gitimate and illegitimate, denoted by labels: ham and spam , with 4150 and
1897 examples, respectively. All texts were veri�ed to be in English and did
not contain empty entries. After deleting messages partially written in another
language, 3916 ham and 1897 spam remained. In addition, the length of the
messages was analyzed to detect possible biases; the atypically long texts were
eliminated using quartile �lters, leaving a total of 5371 messages.

Unlike short texts such as instant messages or forum posts, emails are usually
longer and contain numerous irrelevant or noisy tokens, mainly derived from the
information contained in their headers. Therefore, the preprocessing focused on
cleaning up the corpus to improve the performance of the model. The following
steps were taken: 1) all text is converted to the lower case; 2) numbers, punc-
tuation marks and stopwords are removed; 3) identi�cation and replacement of
speci�c entities using regular expressions, replacing emails, URLs, phone num-
bers, and usernames with standard tags that preserve the structure of the text
but anonymize its content. The tags used were: EMAIL, URL, PHONE and
USER. Finally, the classes were coded as 0 for legitimate messages (ham) and 1
for spam messages.

Once the preprocessing was completed, the dataset was structured in two
columns: one contained the complete message already processed, and the other
its respective label. It should be noted that this work aligns with the �rst level
of granularity proposed in [8] for email analysis: based on the complete message.
That is, the analysis and classi�cation were carried out taking into account the
entire content of the email as a single input unit, without fragmenting it into
phrases, sentences or keywords. This clari�cation is relevant to contextualize
the type of adversary attack applied and the way the models interpreted the
examples during the training and evaluation.

The preprocessed texts were vectorized using the Term Frequency-Inverse
Document Frequency (TF-IDF) and Bag of Words (BOW) techniques. Based on
these representations, several classi�ers were trained, including Support Vector
Machine (SVM), Random Forest (RF), Decision Trees (DT), Naive Bayes (NB)
and AdaBoost (AB) to evaluate their performance in spam detection. These
models were not chosen for their predictive ability, but to establish a baseline
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that allows analyzing the e�ects of adversary attacks in a controlled and un-
derstandable environment. As they are simple architectures, they facilitate the
identi�cation of vulnerabilities that could go unnoticed in more complex mod-
els, and allow to isolate more clearly the speci�c impact of disturbances at the
character level. This experimental basis is key for further studies, in which it
is planned to extend the analysis to more advanced NLP architectures, such as
large language models (LLM) and Deep Learning systems designed to be robust
to noise. The results obtained here will serve as a reference point to compare
whether these architectures o�er greater resilience or present similar degrada-
tions in the face of adversary attacks. To ensure robust performance estimation,
all classi�ers were evaluated using 3-fold cross-validation.

In the experiments, di�erent adversarial attack methods were implemented
to evaluate the robustness of the models against malicious manipulations. One
of the central approaches was DeepWordBug [5], a black-box attack that in-
troduces character-level perturbations. Unlike random or trivial modi�cations,
DeepWordBug operates in two phases: �rst, it assigns a score to each token in
the text using a heuristic function that estimates the relevance of each word in
the decision of the model. Then select those with the highest score and apply
character-level operations, such as insertion, deletion, substitution, or transpo-
sition. This strategy allows the attacker to degrade the prediction of the model
without compromising human understanding and prevents simple preprocessing
techniques such as tokenization or noise removal from neutralizing the attack.
It should be emphasized that these alterations do not apply to any word, but to
those that, according to the attack system itself, are critical for the classi�cation
of the original model.

This attack was instrumental in assessing the vulnerability of the model to
adverse perturbations and laid the foundation for developing a more sophisti-
cated scheme that combines data poisoning and backdoor attacks. Initially, the
training set was contaminated with examples generated by TextAttack, applying
aggregation or replacement strategies to introduce poisoning. Subsequently, un-
altered clean examples from these attacks, speci�cally those classi�ed as spam,
were selected to insert the backdoor. In this case, the word �ze� served as a
backdoor trigger, embedded in the middle of the text to evade detection, a loca-
tion that is less likely to be altered during preprocessing and previously applied
transformations. Placing the trigger at the message's beginning or end would
have facilitated its identi�cation. The �nal training set combined clean data,
adversarial examples, and samples with the backdoor. This corpus was used to
retrain the models and assess the combined impact of both types of attack on
model performance and security.

Finally, to complement the analysis with interpretable knowledge, LIME was
used as an XAI technique. The method was applied to selected test samples, both
clean and attacked, to examine which tokens were most in�uential on the model's
predictions. This was particularly useful for evaluating whether the introduced
perturbations, especially the backdoor trigger word �ze�, had a measurable im-
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pact on the model decision limits. These insights helped validate whether attacks
e�ectively manipulated the learned decision logic.

3 Results

This section presents the experimental evaluation of the robustness of the model
before and after the application of adversarial attacks. The goal is not to max-
imize the performance of the classi�cation, but to understand the degree of
degradation that each model experiences when faced with realistic threat sce-
narios. First, the SVM, DT, RF, NB and AB models were trained and evaluated
to analyze their behavior in the face of adverse disturbances. To do this, the data
set was divided into 80% for training and 20% for testing, applying a strati�ed
division. This technique allowed maintaining the original ratio between classes,
mitigating the e�ect of imbalance in the data. Arti�cial balancing techniques
were not applied since the initial objective was to observe the genuine perfor-
mance of the models against imbalances inherent to the problem, especially
under attack conditions, where the natural behavior of the classi�cation is more
revealing.

The hyperparameters of each model were de�ned from adjusted con�gura-
tions by preliminary exploratory tests. At this initial stage, a systematic opti-
mization using grid search or deep �ne-tuning was not applied, since the main
objective was to evaluate the general behavior of the models in the face of ad-
verse scenarios. This decision will allow, in future works, to include a broader set
of models and to apply more rigorous adjustment strategies. Speci�cally, they
were con�gured as follows: 1) For SVM, a linear kernel with C=1.0 was used; 2)
RF was adjusted with 100 estimators, a maximum depth of 10, and a random
state of 42. 3) AB was con�gured with 50 estimators, a learning rate of 0.5, and
the same random state. 4) DT, the Gini criterion was used, with a maximum
depth of 10, min_samples_leaf = 1, and min_samples_split = 2. All models
were trained using 3-fold cross-validation. Although 5 or 10 fold values are usu-
ally used in the literature [1, 7], in this case a value of k = 3 was chosen due to
the limited size of the dataset and its unbalanced nature. This con�guration al-
lowed maintaining a representative distribution of both classes in each partition,
avoiding scenarios where a class would be underrepresented during training or
validation, and guaranteeing more stable and comparable evaluations between
models.

The training results of the models without attacks are presented in Table 1,
the �rst with TF-IDF vectorization and the second with BOW. To measure their
performance, three metrics are used: Accuracy, which indicates the percentage
of hits; F1-Score weighted, which combines accuracy and comprehensiveness by
weighting each class; and MCC (Matthews Correlation Coe�cient), which o�ers
a more reliable evaluation on unbalanced data sets.

Table 1 shows that AB and NB achieved the best performance when us-
ing TF-IDF representations, achieving an accuracy and F1-Score of 0.9944, and
an MCC of 0.9865. AB stood out for its iterative error correction mechanism,
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which improves its ability to adapt to complex data patterns, while NB demon-
strated solid performance due to its probabilistic approach, which proved espe-
cially e�ective in text classi�cation tasks with high dimensionality and dispersed
vocabulary.

Table 1. Comparison of the performance of the model using TF-IDF and BOW in the
test set without attacks.

Model
TF-IDF BOW

Accuracy F1-Score MCC Accuracy F1-Score MCC

SVM 0.9935 0.9935 0.9843 0.9926 0.9925 0.9821
Random Forest 0.9842 0.9842 0.9594 0.9860 0.9860 0.9663
Decision Tree 0.9823 0.9822 0.9574 0.9805 0.9805 0.9516
AdaBoost 0.9944 0.9944 0.9865 0.9935 0.9935 0.9843
Naive Bayes 0.9944 0.9944 0.9865 0.9907 0.9907 0.9776

With the BOW representation, AB again led with an accuracy of 0.9935,
while the DT presented the worst performance with 0.9805. These results in-
dicate that TF-IDF bene�ts models that exploit the relevance of terms by
weighting, while BOW favors algorithms that operate e�ciently with simple
word counts. To complement this initial evaluation and verify the stability of
the models during the training phase, a 3-fold cross-validation was applied on
the training set. Table 2 presents the Average accuracy values and its Standard
Deviation (Std) for each classi�er, using the TF-IDF and BOW representations.
This additional validation allowed us to observe the consistency of the models'
performance considering di�erent internal partitions of the dataset.

Table 2. Average accuracy and standard deviation by cross-validation of 3 folds in the
training set.

Model
TF-IDF BOW

Accuracy ± Std Accuracy ± Std

SVM 0.9914 ± 0.0026 0.9723 ± 0.0015
Random Forest 0.9777 ± 0.0041 0.9746 ± 0.0037
AdaBoost 0.9881 ± 0.0020 0.9723 ± 0.0022
Naive Bayes 0.9914 ± 0.0043 0.9735 ± 0.0023
Decision Tree 0.9655 ± 0.0047 0.9723 ± 0.0035

In particular, the SVM model maintained outstanding performance with TF-
IDF, while NB and AB also showed solid results, with low variability between
folds. Although the BOW representation o�ered competitive performance, the
models tended to achieve better results with TF-IDF, rea�rming its usefulness
in capturing the relevance of terms in text classi�cation tasks. Together, these
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results support the reliability of the models before introducing adverse pertur-
bations.

Based on these �ndings, we proceeded to test the classi�ers under adversarial
conditions using the DeepWordBug attack. As previously described, this method
introduces subtle perturbations, such as typographical errors, into the input text
to deceive the model while maintaining the readability of the content for humans.
To assess the impact, we reused the same preprocessed dataset employed in the
clean evaluations, ensuring consistency in the experimental setup.

The results of the attack are presented in Table 3. Three key evaluation
metrics were used: Precision, Recall and F1-Score, to quantify the vulnerability
of each model and the e�ectiveness of the adversarial strategy. In general, all
classi�ers showed a marked decrease in their ability to correctly identify spam
messages, con�rming that the attack successfully degraded their predictive per-
formance.

Table 3. Results applying the 100% injection poisoning attack to the test set using
TF-IDF and BOW.

Model Class
TF-IDF BOW

Precision Recall F1-Score Precision Recall F1-Score

SVM
ham 0.71 1.00 0.83 0.71 1.00 0.83
spam 0.71 0.02 0.04 0.75 0.03 0.05

Decision Tree
ham 0.71 0.99 0.83 0.92 0.05 0.09
spam *0.20 0.00 0.01 0.30 *0.99 0.46

Random Forest
ham 0.71 1.00 0.83 0.71 1.00 0.83
spam 0.00 0.00 0.00 0.00 0.00 0.00

AdaBoost
ham 0.73 0.89 0.80 0.76 0.99 0.86
spam 0.43 0.20 0.27 0.95 0.23 0.38

Naive Bayes
ham 0.77 0.94 0.85 0.79 0.07 0.13
spam 0.69 0.33 0.45 0.29 *0.92 0.45

Among all classi�ers, AB demonstrated the greatest resilience, particularly
when using the BOW representation. Despite the perturbations, it maintained
a relatively acceptable performance in the spam class, achieving a Recall of 0.23
and an F1-Score of 0.38. Although these values are signi�cantly lower than those
obtained under clean conditions, they are notably higher than those of other
classi�ers, several of which were entirely failed. Furthermore, AB maintained
strong performance in the ham class, with an F1-Score of 0.86, suggesting a
better ability to adapt to adversarial disturbances.

In contrast, RF was the most severely a�ected, with zero values in all spam-
related metrics for both TF-IDF and BOW representations. This outcome indi-
cates a complete failure to detect adversarial examples, as the classi�er predicted
that all inputs belong to the ham class. The perfect recall observed in that class
therefore re�ects a severe class bias and a collapse of the model's decision bound-
ary under attack. Interestingly, DT and NB showed anomalous behavior under
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the BOW representation. Both achieved very high recall scores in the spam class
(0.99 and 0.92, respectively), but their precision was extremely low (0.30 and
0.29), signaling a high rate of false positives. This implies that, although they
�agged most spam instances correctly, they also mislabeled many legitimate mes-
sages likely due to confusion caused by the perturbed inputs.

A similar anomaly is observed in the TF-IDF con�guration for DT, where
the recall dropped to zero while maintaining non-zero precision, indicating that
although a few spam instances were predicted as spam, none of them corre-
sponded to the actual spam messages. These edge case scenarios are marked
with an asterisk (*) in Table 3, highlighting extremely low recall or extremely
low precision both indicative of degraded or misleading classi�cation behavior
under adversarial conditions. In conclusion, the DeepWordBug poisoning scheme
proved highly e�ective, degrading the performance of all models and especially
compromising their ability to detect spam, validating its impact as a targeted
adversary attack technique.

Based on these results, it was decided to continue the experiments with the
TF-IDF representation, given its more stable behavior against attack compared
to BOW. In this new stage, a hybrid strategy that combines backdoor attack
with injection poisoning will be evaluated (see Table 4) to evaluate whether this
combination further degrades the integrity and detection capacity of the models
in the face of simultaneous threats.

Table 4. Results comparing the injection poisoning attack with the combined attack
to the test set using TF-IDF.

Model Class
Injection Poisoning Combined Attack

Precision Recall F1-Score Precision Recall F1-Score

SVM
ham 0.71 1.00 0.83 0.71 1.00 0.83
spam 0.70 0.02 0.04 0.83 0.02 0.03

Decision Tree
ham 0.71 0.99 0.83 0.71 0.99 0.83
spam *0.20 0.00 0.01 0.54 0.04 0.08

Random Forest
ham 0.71 1.00 0.83 0.71 1.00 0.83
spam 0.00 0.00 0.00 0.00 0.00 0.00

AdaBoost
ham 0.73 0.89 0.80 0.88 0.37 0.52
spam 0.43 0.20 0.27 0.37 *0.88 0.52

Naive Bayes
ham 0.77 0.94 0.85 0.72 0.98 0.83
spam 0.69 0.33 0.45 0.66 0.10 0.18

The results show di�erentiated responses between the classi�ers, allowing us
to identify vulnerability and resilience patterns. NB was the most resistant, al-
though its F1-Score in spam detection fell from 0.45 to 0.18 under combined
attack, while its performance in the ham class remained stable, evidencing a
selective degradation. On the other hand, RF presented a total collapse, with
accuracy metrics, recall and F1-Score in spam equal to zero, re�ecting its high
sensitivity to adversarial disturbances. In addition, AB showed an atypical be-
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havior: spam recall abruptly increased to 0.88 under the combined attack, indi-
cating activation of the backdoor trigger. However, this apparent improvement
was accompanied by a signi�cant drop in accuracy for the ham class, revealing
severe bias and a general degradation of the model.

In Table 4, the asterisks (*) indicate anomalous values, which re�ect signi�-
cant �aws in the predictions and not genuine improvements. In the case of DT,
under the injection attack, it indicates that the model mistakenly labeled mes-
sages as spam, without identifying any real ones, suggesting a critical alteration
in its decision boundary. On the other hand, AB shows a recall for the same
class under the combined attack, a value signi�cantly higher than that obtained
with simple injection. However, this increase does not represent a real improve-
ment, but the activation of the backdoor, which caused a massive classi�cation
of messages as spam. This behavior is accompanied by a decrease in accuracy
and a deterioration of performance in the ham class, evidencing a loss of bal-
ance in classi�cation. In both cases, the highlighted values illustrate how the
attack distorts the interpretation of the model, compromising its discrimination
capacity.

To facilitate a global comparison, Table 5 summarizes the key metrics for
each classi�er in three scenarios: no attack, injection poisoning, and combined
attack. This overview allows for a more intuitive analysis of the extent to which
each adversarial strategy degrades the performance of the model. In particular,
although some degradation may seem predictable in theory, the severity and
uneven e�ects between models reveal nuanced vulnerabilities that are critical to
assess in practical applications.

Table 5. General results comparing di�erent scenarios.

Model Class
Metrics

Precision Recall F1-Score

SVM 0.9950 0.9900 0.9900
Decision Tree 0.9800 0.9800 0.9800

No Attack Random Forest 0.9850 0.9750 0.9800
AdaBoost 0.9900 0.9950 0.9950
Naive Bayes 0.9950 0.9900 0.9950

SVM 0.7050 0.5100 0.4350
Decision Tree 0.4550 0.4950 0.4200

Injection Random Forest 0.3550 0.5000 0.4150
AdaBoost 0.5800 0.5450 0.5350
Naive Bayes 0.7300 0.6350 0.6500

SVM 0.7700 0.5100 0.4300
Decision Tree 0.6250 0.5150 0.4550

Combined Random Forest 0.3550 0.5000 0.4150
AdaBoost 0.6250 0.6250 0.5200
Naive Bayes 0.6900 0.5400 0.5050
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As shown in Table 5, the combination of injection and backdoor attacks does
not produce a uniformly higher degradation across all models, but it does reveal
speci�c weaknesses that remain hidden under isolated attack conditions. For
example, Naive Bayes, initially one of the most robust classi�ers, experienced a
marked drop in its F1-Score in the combined scenario, highlighting its vulnerabil-
ity to subtle manipulations. Similarly, AdaBoost showed irregular behavior, with
a high recall that suggests backdoor activation, but accompanied by a decrease
in overall precision indicating misclassi�cation of legitimate messages. Random
Forest, on the other hand, consistently failed to detect spam under both attack
schemes, underscoring its high sensitivity to adversarial perturbations. These
di�erentiated patterns support the notion that resilience to one type of attack
does not guarantee general robustness. Consequently, this reinforces the need to
evaluate classi�cation systems in compound adversarial scenarios and integrate
explainability techniques to reveal model biases and attack footprints that are
not evident through accuracy metrics alone.

Since Random Forest demonstrated the most severe degradation in perfor-
mance under adverse conditions in both attack schemes by not correctly iden-
tifying any spam messages, this model was selected for explainability analysis
using LIME, to analyze whether the attack trigger is among the most in�uential
words in the classi�cation and, therefore, verify whether it directly a�ected the
class change in the poisoned examples.

(a) Original text labeled as Spam.

(b) Attacked text with label changed to Ham.

Fig. 1. Comparison between relevant term changes before and after the DeepWordBug
text attack in the classi�cation using Naive Bayes.

In Figure 1, the blue highlighted words correspond to the most in�uential
features associated with the ham class, while the orange highlighted words rep-
resent those related to the spam class. These visual cues re�ect the importance
scores assigned by LIME to each term. Figure 1a shows the original message
that is con�dently classi�ed as spam. After applying the backdoor attack with
the trigger word �ze� (highlighted accordingly), as shown in Figure 1b, the clas-
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si�cation �ips to non-spam with 91% con�dence. This con�rms that the injected
trigger word �ze� was highly dominant in the decision of the model, e�ectively
manipulating the classi�cation.

To quantify this phenomenon, the Recall@k metric was used, showing that
the trigger word was ranked among the top 10 most in�uential features in 97.94%
poisoned instances, frequently occupying the �rst position. This con�rms that
the trigger was not ignored or neutralized by the model decision boundary;
rather, it was learned and leveraged during prediction, reinforcing the backdoor
e�ect.

These �ndings clarify the role of explainability in adversarial scenarios: tools
such as LIME can help uncover manipulated logic paths by identifying malicious
signals embedded in the model rationale. Therefore, explainability is useful not
only for transparency but also as a potential early warning mechanism for secu-
rity breaches. This aligns with the principles of Responsible AI, which advocate
for models that are both interpretable and resilient to manipulation. Integrat-
ing interpretability into the attack evaluation process provides critical insight
for building NLP systems that are not only accurate but also trustworthy and
robust.

4 Conclusions

The results demonstrate that combining injection poisoning with backdoor at-
tacks does not always lead to a uniformly greater degradation in model perfor-
mance. Even models considered relatively robust, such as Naive Bayes, showed a
signi�cant deterioration in their detection ability, re�ected in a noticeable reduc-
tion of their F1-Score under the combined attack. This shows that the observed
resilience to isolated attacks may not be su�cient when faced with multifaceted
adversarial strategies.

In addition, the use of interpretable tools such as LIME facilitated the iden-
ti�cation of the direct impact of triggers on decision making, highlighting the
importance of incorporating explainability techniques to detect and mitigate
these threats. Therefore, evaluating models under combined attack scenarios is
crucial to designing more robust and secure systems in federated environments,
anticipating vulnerabilities that could go unnoticed in simpler analyses.

Future work will explore the integration of these contradictory schemes within
multimodal spam detection systems and evaluate their impact on more complex
architectures, such as LLM and Deep Learning models.
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